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Abstract— Despite the growing interest for autonomous 

environmental monitoring, effective SLAM realization in native 

habitats remains largely unsolved. In this paper, we fill this gap 

by presenting a novel online graph-based SLAM system for 2D 

LiDAR sensor in natural environments. By taking advantage of 

robust weighting scheme, sliding-windowed optimization, fast 

scan-matcher and parallel computing, our system not only 

delivers stable performance in cluttered surroundings but also 

meets real-time constraint. Simulated and experimental results 

confirm the feasibility and efficiency in the overall design of the 

proposed system. 
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I. INTRODUCTION 

SLAM is considered as one of key technologies in fully-
autonomous vehicles. A robot capable of mapping and self-
localization concurrently can perform online path planning, 
avoid obstacles and reduce accumulated localized error 
caused by dead-reckoning system [1]. Not only has SLAM 
been deployed in different environments (indoor [2], urban 
[3], riverine [4], seabed [5]) but it has been realized by various 
modalities (LiDAR [2], camera [6], sonar [5], radar [4]). 

Application of 2D LiDAR SLAM systems in man-made 
environments is a story of great success [7] [8] [2]. However, 
their viability in natural ones (forests, rivers) remains 
questionable. It is apparent that traditional SLAM systems 
degrade deeply in quality due to cluttered scene, deficiency of 
distinguished features (corners, edges) and abrupt 
illumination variation [9]. Another reason that hinders the 
development of an efficient SLAM system in those 
environments is a shortage of useful site-specific datasets: [9] 
only provides raw camera images, [10] does records 2D 
LiDAR scans but lacks ground truth. Fortunately, recent 
success of VO system (sub-problem of visual SLAM) in 
riverine habitat [11] sheds light on how to tackle some 
challenges faced by current SLAM systems. To account for 
global and local lighting changes, the author proves that an 
adaptive weighting strategy makes cost function more 
illumination-invariant. Thus, robust weighting kernels show 
promising potential in contributing to a workable SLAM 
solution for arbitrary modality in general. 

Nowadays, backed by rocketing enhancement in 
microprocessor power,  memory capacity, computation 
algorithm, graph optimization based on nonlinear least-
squares become the mainstream of SLAM research. 
Traditionally, most 2D LiDAR SLAM systems rely on time-
consuming batch processing, which optimizes a whole graph 
structure at a time, for offline map reconstruction [12] [7].  For 
online mapping, sliding-windowed approach is usually 

exploited to maintain constant update time in visual SLAM [6] 
[13]. However, this method is seldomly implemented in the 
2D LiDAR SLAM literature, which partly stems from slow 
correlative scan matching techniques [14] [15]. A common 
alternative is submapping, which is employed by 
Cartographer [2], but this introduces cumbersome map 
management system and impedes sensor fusion in the long 
run. Therefore, adopting a fast scan-matcher is essential to 
bring sliding-windowed 2D LiDAR SLAM into practice. 

 

Our main contribution in this paper is to design a novel 2D 
LiDAR SLAM that leverages robust weighting scheme, 
sliding-windowed optimization, fast scan-matcher and 
parallel computing to exhibit stable and real-time performance 
in natural environments. Similar to [2], we utilize the power 
of parallelization by dividing the system into three building 
modules, each of which runs in separate thread (Fig. 1). 

• Local Tracking estimates LiDAR pose and updates 
graph structure. Inspired by [6], a newly created node 
is connected to nearby ones to ensure the system’s 
robustness. However, multiple scan alignments in 
tens of milliseconds is impossible unless a fast scan-
matcher is used. Thus, we adopt Andrea’s PLICP 
[16] thanks to its superior speed over correlative 
methods. To finish the proof of Andrea, we expand 
his quartic equation to obtain an explicit formula for 
every coefficient. In addition, to estimate uncertainty 
of the matching result, we apply a theorem from [17] 
to 2D LiDAR measurement and arrive at a closed-
formed solution for uncertainty covariance. 
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Fig. 1. Block diagram of the overall SLAM system: while Local 
Tracking interrupts to process raw LiDAR scans, other two modules 

constantly check for relevant flags to carry out their tasks. 



• Graph Optimization optimizes partial or entire graph 
structure. When a node is created, all nodes in the 
current sliding window are optimized, thereby 
reducing the ill-effect of local optima in past 
optimization steps. To prevent outliers from 
deteriorating the system, every consecutive graph 
constraint is robustified by a generalized robust 
kernel. Loop is detected based on distance metrics to 
eliminate drift and maintain global map consistency. 

• Map Construction manages the insertion and 
removal of scans in the map. We choose occupancy 
grid map thanks to its straightforward 
implementation but wide application in other robotic 
tasks such as path planning, obstacle avoidance. 

Simulated results confirm that our SLAM system can 
operate in real-time (execution time of each thread fluctuates 
around 15ms), make small error over long travelling distance 
(ATE of 0.6m in a 500-metered run). Experimental results 
further demonstrate the system’s robustness under cluttered 
scene around a lake. This paper is structured as followed: 
section II to IV give detailed description of each module’s 
operational principle, section V analyses the system’s 
performance through simulated and experimental results, 
section VI concludes and discusses further applications. 

II. LOCAL TRACKING 

A. Scan Matching 

The aim of scan matching is to find a rigid transformation 

that aligns two scans: given a reference surface 𝒮ref 
approximated by reference scanpoints {𝐩𝑗} ,  find a roto-

translation 𝐪 = [𝐭 𝜃]T  that minimizes the distance from 
each 𝐩𝑖

𝑤 = 𝐩𝑖 ⊕ 𝐪 in current scanpoints {𝐩𝑖} to its projection 

∏{𝒮ref, 𝐩𝑖
𝑤}  on surface 𝒮ref . Among various algorithms, 

Andrea’s PLICP [16] is chosen thanks to its rapid and finite 
convergence properties. According to Andrea, for every 𝐩𝑖

𝑤, a 
corresponding search is carried out to find two closest 
reference points in {𝐩𝑗}, denoted 𝐩𝑗1

𝑖  and 𝐩𝑗2
𝑖 . Without loss of 

generality, set 𝐩𝑗1
𝑖 = ∏{𝒮ref, 𝐩𝑖

𝑤} and the normal vector 𝐧𝑖 of 

𝒮ref at 𝐩𝑗1
𝑖  is perpendicular to 𝐩𝑗1

𝑖 − 𝐩𝑗2
𝑖 . PLICP is formulated 

as: 

𝐪𝑘+1 = argmin ∑(𝐧𝑖
T [𝐩𝑖 ⊕ 𝐪𝑘+1 − 𝐩

𝑗1
𝑖 ])

2

𝑖

(1) 

Andrea proves that (1) possesses a closed-formed solution 
that relates to solution of a quartic equation with unknown 𝜆: 

𝐠T(2𝐌 + 2𝜆𝐖)−1𝐖(2𝐌 + 2𝜆𝐖)−T𝐠 = 1 (2) 

For completion, we expand (2) to obtain those 
coefficients: 

𝑎𝜆4 + 𝑏𝜆3 + 𝑐𝜆2 + 𝑑𝜆 + 𝑒 = 0 (3) 

• 𝑎 = 16 

• 𝑏 = 16tr(𝐒) 

• 𝑐 = 8|𝐒| + 4tr(𝐒)2 − 4𝐠T [𝐀
−1𝐁𝐁T𝐀−T −𝐀−1𝐁
−𝐀−1𝐁 𝟏

] 𝐠 

• 𝑑 = 4|𝐒|tr(𝐒) − 4𝐠T [𝐀
−1𝐁𝐒A𝐁T𝐀−T −𝐀−1𝐁𝐒A

−𝐀−1𝐁𝐒A 𝐒A
] 𝐠 

• 𝑒 = |𝐒|2 − 𝐠T [𝐀
−1𝐁𝐒AT

𝐒A𝐁T𝐀−T −𝐀−1𝐁𝐒AT
𝐒A

−𝐀−1𝐁𝐒AT
𝐒A 𝐒AT

𝐒A
] 𝐠 

B. Uncertainty Estimation 

To predict uncertainty of an arbitrary estimation, in 
computer vision communities, the following theorem [17] is 
often used: let 𝐱 be the result of minimizing a cost function 𝐽 
which depends on some 𝐳 measurement, then it follows that 
the uncertainty covariance can be approximated by: 

cov(𝐱) ≅
𝜕2𝐽

𝜕𝐱2

−1
𝜕2𝐽

𝜕𝐱𝜕𝐳
cov(𝐳)

𝜕2𝐽

𝜕𝐱𝜕𝐳

T

 
𝜕2𝐽

𝜕𝐱2

−1

(4) 

In our scan matching’s case, 𝐱 = [𝐭 𝜃]T  and the cost 

function is: 

𝐽 = ∑(𝐧𝑖
T [(𝐑(𝜃)𝐩𝑖 + 𝐭) − 𝐩

𝑗1
𝑖 ])

2

𝑖

= ∑𝐽𝑖
𝑖

(5) 

For 2D LiDAR, cov(𝐳)  corresponds to the standard 
deviation of range measurement, which is mentioned in 
datasheet. To facilitate the following deduction, every 
scanpoint 𝐩𝑖  and 𝐩𝑗  is converted to its equivalent radial 

representation 𝐩𝑖 = 𝜌𝑖𝛝𝑖  and 𝐩𝑗 = 𝜌𝑗𝛝𝑗  with known 

directional vector 𝛝 and measured range 𝜌. In formulae, 𝐳 is 
formed by concatenating the current scanpoint with its two 
closest reference ones: 

𝐳 = [𝜌1 𝜌𝑗1
1 𝜌𝑗2

1 … 𝜌𝑖 𝜌𝑗1
𝑖 𝜌𝑗2

𝑖 …]T (6) 

Following Andrea, we set 𝐂𝑖 = 𝐧𝑖𝐧𝑖
T, 𝐯1 = 𝐑(𝜃 +

𝜋

2
) 𝐩𝑖, 

𝐯2 = 𝐑(𝜃)𝐩𝑖 + 𝐭 − 𝐩𝑗1
𝑖 , 𝐯3 = 𝐑(𝜃)𝛝𝑖 , 𝐯4 = 𝐑(𝜃 +

𝜋

2
) 𝛝𝑖 , 

𝐯5 = 𝐑(𝜃 + 𝜋)𝐩𝑖 . Taking second partial derivatives, we 
clarify his proof: 

𝜕2𝐽𝑖
𝜕𝐱2

= [
2𝐂𝑖 2𝐂𝑖𝐯1

2𝐯1
T𝐂𝑖 2𝐯2

T𝐂𝑖𝐯5 + 2𝐯1
T𝐂𝑖𝐯1

] (7) 

𝜕2𝐽𝑖
𝜕𝐱𝜕𝐳

= [
𝟎 𝟎 𝟎 …
0 0 0 …

                                  (8) 

2𝐂𝑖𝐯3 −2𝐂𝑖𝛝𝑗1
𝑖 + 2

𝜕𝐂𝑖

𝜕𝜌𝑗1
𝑖
𝐯2 2

𝜕𝐂𝑖

𝜕𝜌𝑗2
𝑖
𝐯2 …

2𝐯2
T𝐂𝑖𝐯4 + 2𝐯3

T𝐂𝑖𝐯1 2𝐯2
T

𝜕𝐂𝑖

𝜕𝜌𝑗1
𝑖
𝐯1 − 2𝐯1

T𝐂𝑖𝛝𝑗1
𝑖 2𝐯2

T
𝜕𝐂𝑖

𝜕𝜌𝑗2
𝑖
𝐯1 …

]
 
 
 
 

 

with 𝜖 = 0.001: 

𝜕𝐂𝑖

𝜕𝜌𝑗1,2
𝑖

≅
𝐂𝑖 (𝜌𝑗1,2

𝑖 + 𝜖.sgn(𝜌𝑗1,2
𝑖 ) ‖𝜌𝑗1,2

𝑖 ‖) − 𝐂𝑖 (𝜌𝑗1,2
𝑖 )

𝜖
(9) 

Summing all individual derivatives, we get: 

𝜕2𝐽

𝜕𝐱2
= ∑

𝜕2𝐽𝑖
𝜕𝐱2

𝑖

,
𝜕2𝐽

𝜕𝐱𝜕𝐳
= ∑

𝜕2𝐽𝑖
𝜕𝐱𝜕𝐳

𝑖

(10) 

C. Module Details 

When a LiDAR scan is received, the scan-matcher aligns 
it with the latest node’s scan to get LiDAR relative 
displacement, which is subsequently concatenated with the 
latest node’s pose to get LiDAR current pose. We set the 
previous roto-translation as initial guess to boost convergence 
rate of the scan-matcher. If the matching result exceeds a 
predefined threshold in translation or rotation, a new node is 
created with its pose being the current LiDAR pose. Since 
scan matching is an iterative procedure, global convergence is 
not guaranteed. Therefore, to prevent the whole system from 
collapse, the newly created node is densely connected with 
nearby ones in a predefined radius, hoping subsequent 



optimization steps pull past nodes closer to their global 
optima. Loop closing mechanism, in our system, is simple: we 
create a loop constraint between two nodes whenever their 
indexes differ from each other by a certain threshold. 

III. GRAPH OPTIMIZATION 

A. Robust Kernel 

Nonlinear least-squares (NLS) is frequently used for real-
time graph optimization. However, NLS can get stuck in local 
optima if data contain many outliers. This is especially the 
case of online SLAM that operates in sophisticated 
environments. To relieve the ill-effect of outliers, one of the 
most popular methods is robust kernels, which flatten large 
residuals to minimize their influence on the solution. The NLS 
combined with robust kernel can be solved by the Iterative 
Reweighted Least Squares (IRLS) [18] approach. 

Let 𝐱 = [𝐱1
T … 𝐱𝑛

T]T  be vector of all LiDAR poses 

from 𝑡1 to 𝑡𝑛 with 𝐱𝑖 = [𝑥 𝑦 𝜃]T. The purpose of IRLS is 
to estimate 𝐱: 

𝐱∗ = argmin ∑𝑤𝑖𝑗𝑟𝑖𝑗(𝐱)2

𝑖,𝑗

(11) 

by minimizing the total sum of weighted squared residuals 
𝑟𝑖𝑗(𝐱):  

𝑟𝑖𝑗(𝐱) = √𝐞𝑖𝑗(𝐱)T𝛀𝑖𝑗𝐞𝑖𝑗(𝐱) (12) 

with 𝐞𝑖𝑗(𝐱) = �̂�𝑖𝑗(𝐱𝑖, 𝐱𝑗) − 𝐳𝑖𝑗  be the error between �̂�𝑖𝑗 =
𝐱𝑖 − 𝐱𝑗  and the estimated roto-translation 𝐳𝑖𝑗 , uncertainty 

covariance 𝛀𝑖𝑗  from the scan-matcher. By utilizing robust 

kernel, each residual’s weight is adaptively computed based 
on the residual’s magnitude:  

𝑤𝑖𝑗 =
1

𝑟𝑖𝑗(𝐱)2
. 𝜌 (𝑟𝑖𝑗(𝐱)) (13) 

with 𝜌(𝑟) be the characteristic function of the robust kernel. 
For convenience, we shall implement Barron’s kernel that 
generalizes several kernels [19]: 

𝜌(𝑟, 𝛼, 𝑐) =
|𝛼 − 2|

𝛼

(

 
 

(
(
𝑟
𝑐
)

2

|𝛼 − 2|
+ 1)

𝛼
2

− 1

)

 
 

(14) 

By simple tuning 𝛼 , we can interpolate between various 
robust kernels: L2 (𝛼 = 2), L1 (𝛼 = 1), Cauchy (𝛼 = 0), 
Geman-McClure (𝛼 = −2), Welsh (𝛼 = −∞). In this paper, 
𝛼 is manually selected to deal with different kinds of outliers. 
A system of dynamically adapting 𝛼 is a promising research 
area yet to be explored. 

B. Module Details 

When a new node is detected, it is immediately added to 
the current sliding window. All consecutive constraints are 
robustified because they possess higher potential of being 
outliers. Optimization then takes place within those nodes 
residing in the current sliding window, thereby ensuring 
constant-time graph update. Upon detecting a loop, to 
eliminate drift and maintain global map consistency, the 
whole graph is optimized. At first glance, this may seen too 
time-consuming, but it worths noting that graph optimization 

runs in a separate thread, and loop closure is not a frequent 
occurrence, so batch optimization in this case is acceptable. 

IV. MAP CONSTRUCTION 

A. Occupancy Grid Map Update 

A common map type for 2D SLAM is occupancy grid 
map: each cell 𝑖  is either marked occupied (𝑚𝑖 ) or empty 
(¬𝑚𝑖 ). To represent the probabilistic relationship between 
measurement’s history 𝐳1:𝑡 , agent’s trajectory 𝐱1:𝑡  and cell 
state {𝑚𝑖} , Hidden Markov Model (HMM) [20] is usually 
applied: 𝐳𝑡  only depends on 𝐱𝑡 , {𝑚𝑖} is independent of 𝐱𝑡 , 
each 𝑚𝑖 is pairwise independent of one another. Also in [20], 
the log-odds update rule for occupancy grid map, in formulae, 
is: 

𝑙(𝑚𝑖|𝐳1:𝑡 , 𝐱1:𝑡) = 𝑙(𝑚𝑖|𝐳1:𝑡−1, 𝐱1:𝑡−1) (15) 

+𝑙(𝑚𝑖|𝐳𝑡 , 𝐱𝑡) − 𝑙(𝑚𝑖) 

In case of 2D LiDAR, the measurement is in the form of 
𝐳𝑡 = [𝜌1 𝜌2 … 𝜌𝑁]  with 𝜌𝑖  be the reflected distance 
from a surface at angle 𝑖  and 𝑁  be number of rays per 
sampling interval of LiDAR. To calculate 𝑝(𝑚𝑖|𝐳𝑡 , 𝐱𝑡) , 
firstly, each ray in 𝐳𝑡 is discretized to the map’s resolution by 
Bresenham’s algorithm [21]. Then, cell at the final end is 
considered occupied and the other is considered empty: 

𝑝(𝑚𝑖|𝐳𝑡 , 𝐱𝑡) = {
𝑝𝑟𝑜𝑝_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑, 𝑚𝑖

𝑝𝑟𝑜𝑝_𝑓𝑟𝑒𝑒, ¬𝑚𝑖
(16) 

B. Module Details 

Upon witnessing a successful optimization step, the latest 
scan is added to the current map by means of updating the 
occupancy probability of each cell along individual ray. Also, 
past scans can be read if their related nodes deviate much in 
pose since the last update. This simple procedure, however, 
does not guarantee optimal map retrieval at any time, but is 
applicable to other robotic tasks as long as the map resolution 
is kept above a minimum acceptable value. 

V. RESULTS 

A. Implementation 

Robot Operating System (ROS) is a popular middleware 
in the implementation of many robotic tasks. In this paper, 
ROS is used to collect LiDAR scans, exchange messages 
among different modules and visualize algorithmic results. To 
solve Andrea’s quartic equation in the scan-matcher, we 
employ Eigen library. We use g2o [22] to manage graph 
structure and choose Levenberg-Marquardt algorithm with a 
maximum of 100 steps to solve IRLS. ATE and RPE metrics 
[23] are selected for quantitative evaluation of localized error. 

B. Simulation 

In Gazebo environment, we drive a USV around a valley 
of size 200x200m (Fig. 2). USV is equipped with a 2D LiDAR 
sensor (coverage angle of 270o, angular resolution of 0.25o, 
maximum range of 60m, scanning rate of 40Hz). In 
correlation with the environment size, we set the map’s 
resolution to 0.4m (Fig. 4) for online mapping. A map of 
higher resolution (0.1m) (Fig. 3) can be generated offline after 
travelling. All simulated results are implemented in Intel Core 
i7-3770 3.40GHz. Statistics are summarized in Table I. 

At the end of the journey, when USV returns to its 
departure point, loop is detected, multiple loop constraints are 
created, all nodes in the graph is optimized and many scans 



are read, making execution time each thread escalates. As an 
effect of loop closure, accumulated localized error is 
significantly reduced, making the map more globally 
consistent (Fig. 7). 

 

Looking at Fig. 5, it is apparent that the execution time of 
each thread fluctuates around a constant level, thus confirming 
real-time capability of the whole system. 

 

 

When entering a wide area, the number of valid rays for 
scan matching declines sharply, making the estimation’s 
uncertainty increase. As a result, the scan-matcher is more 
likely to get stuck in local optima. This observation is verified 
by some sudden rises in sum of active squared residuals (Fig. 

6). We can see the impact of robust kernel in this case in  
reducing the magnitude of large residuals that threaten to shut 
down the system. 

 

Since our SLAM system consists of many concurrent 
tasks, each of which gains random access to the computer 
resources, randomness in results is unavoidable. Thus, to 
make the results more reliable, especially for ATE and RPE, 
we repeat the simulation 10 times (Fig. 8), then plot the values 
of ATE and RPE for each attempt to examine their variation. 
As can be seen from Fig. 8, ATE and RPE fluctuate around 
0.61m  and 0.21m respectively with the largest deviation of 
0.02m, thereby confirming the system’s reliability despite the 
fact that there exists some randomness in the system’s 
operation. 

 

TABLE I.  SIMULATION STATISTICS 

Number of graph nodes 638 

Number of graph constraints 1952 

Travelling distance 496.728 m 

Execution time for scan matching (avg – max) 10 – 35 ms 

Execution time for local tracking (avg – max) 15 – 98 ms 

Execution time for graph optimization (avg – max) 11 – 234 ms 

Execution time for map construction (avg – max) 49 – 1866 ms 

RPE 0.217 m 

ATE 0.632 m 

  
Fig. 2. Simulated valley and the 

vehicle’s trajectory 

Fig. 3. Complete map of valley 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Map reconstruction step at 7 (a), 167 (b), 297 (c) and 450 (d) nodes. 

 

 

Fig. 5. Execution time for three threads. 

 

Fig. 6. Sum of active square residuals (above) vs. number of valid rays 

for scan matching (below). 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Localization before (b) and after loop closure (c). After closing 
loop, the estimated pose (red) approaches ground truth (black), thus 

eliminating drift after the long run (a). 

 

 

Fig. 8. Evaluation of the system’s reliability after 10 attempts. 



C. Experiment 

USV2000 (Fig. 10) is a new generation of autonomous 
surface vehicles that leverages two rear thrusters for moving 
forward and two side ones for turning. Jetson Nano embedded 
computer plays a central role in realizing control and 
navigation algorithms. Each program in the computer is 
packaged in a ROS node to take advantage of efficient data 
interchange in the ROS ecosystem. The embedded computer 
communicates with STM32F407 microcontrolller by CAN 
bus and with VIAM-USV-QG ground control station by Wifi 
network. To realize our SLAM system, we equip USV2000 
with Hokuyo UTM-30LX 2D LiDAR sensor (coverage angle 
of 270o, angular resolution of 0.25o, maximum range of 39m, 
scanning rate of 40Hz). In this experiment, the surface vehicle 
is commanded to travel a short journey close to the bank of 
Phu Tho Lake (Fig. 9). Statistics are summarized in Table II. 

 

 

Looking at Fig. 13Fig. 14, it is apparent that the execution 
time of each thread fluctuates around a constant level, thus 
confirming real-time capability of the whole system. 

 

 

Looking at the generated map (Fig. 12) with a resolution 
of 5cm, it worths emphasizing that although the surroundings 
are cluttered with leaves and bushes, our SLAM system is able 
to robustly create a detailed description of the riverine 
scenery. To further examine the system’s robustness, looking 
at Fig. 14, it is noticeable that although the number of valid 
rays for scan matching decreases substantially as USV moves 
farther from the bank, robust kernel is able to withstand the 
effect of rapid increase in sum of active squared residuals, thus 
maintaining the system’s stability throughout the journey. 

TABLE II.  EXPERIMENT STATISTICS 

Number of graph nodes 65 

Number of graph constraints 330 

Travelling distance 32.082 m 

Execution time for scan matching (avg – max) 10 – 22 ms 

Execution time for local tracking (avg – max) 35 – 86 ms 

Execution time for graph optimization (avg – max) 7 – 52 ms 

Execution time for map construction (avg – max) 32 – 47 ms 

RPE - 

ATE - 

VI. CONCLUSIONS 

In this paper, our proposed graph-based SLAM that 
utilizes 2D LiDAR as the unique modality is designed with 
the philosophy of modularization and parallelization in order 
to simultaneously estimating the LiDAR pose and building a 
detailed representation of a natural environment in an online 
fashion. While simulated results demonstrate an  ATE of 0.6m 
after loop closing, experimental ones confirm the system’s 
stability in the condition of cluttered surroundings in riverine 
environment. This opens up various applications of SLAM in 
many robotic tasks: online path planning, obstacle avoidance, 
etc. 

 
Fig. 9. Experimental location 

and the vehicle’s trajectory 

 
Fig. 10. USV2000 

 
Fig. 11. Phu Tho Lake. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 12. Partial map of the lake (a) and zoom-in some parts (b-c). 

 

 

Fig. 13. Execution time for three threads. 

 

 

Fig. 14. Sum of active square residuals (above) vs. number of valid 

rays for scan matching (below). 
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