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Abstract. Pose estimation is one of the fundamental capabilities that
must be fulfilled by autonomous vehicles prior to performing other tasks
such as collision avoidance and motion control. Due to the complexity
of outdoor environments, this problem can only be effectively solved by
fusing multiple modalities such as LiDAR and camera. In this paper,
we propose a novel method to tightly couple inertial measurements from
IMU into the emerging direct visual-laser odometry framework. To be
more specific, a 2-step optimization-based approach is employed. Firstly,
inertial measurements are used to introduce additional constraints in di-
rect image alignment. The estimated pose is then refined in IMU-assisted
windowed refinement. To validate the proposed method, we carry out in-
tensive experiments in two recent and challenging datasets: UrbanLoco
and USVInland. Experimental results show that our framework enjoys
more robust and accurate pose estimation in challenging scenarios com-
pared to that of existing popular methods.
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1 Introduction

Pose estimation is crucial for robotic navigation. In robotics research, this
task can also be named visual odometry, laser odometry, or more generally, simul-
taneous localization and mapping (SLAM). Due to its widespread applications
ranging from autonomous driving [1] to virtual reality [2], an enormous effort
has been made in both academia and industry to realize a highly accurate, ro-
bust, and efficient implementation of pose estimation for long-term localization
in large-scale and dynamic environments [3].

In the literature, there exists a large variety of methods for pose estimation,
most of which rely on RGB-D cameras or LiDARs. Current state-of-the-art indi-
rect methods, either visual-based [4][5] or laser-based [6][7], focus on enhancing
the robustness of feature extraction while employing a common backend opti-
mization framework. Recently, there has been steady attention towards feature-
less methods which directly utilize raw sensory data to estimate motion, such
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as the visual-based DSO [8] or laser-based SUMA [9]. The main advantage of
these classes of direct methods lies in their coherent integration of the delicate
data association process into the nonlinear optimization module, thus being ca-
pable of pushing the limit of pose estimation in some very challenging outdoor
environments. However, direct formulation of pose estimation are much more
non-convex, thus requiring more careful tweaks in every optimization step to
ensure proper convergence.

To ease the development of direct pose estimation, some authors suggest
fusing different modalities either visual-inertial-based [10], laser-inertial-based
[11], or visual-laser-based [12]. By incorporating multiple sensors, direct methods
become more easily implementable thanks to more complementary constraints
available and reduction of variables that need to be estimated. In this paper,
we follow this strategy and push forwards the development of direct methods
by tightly coupling IMU measurements into the direct visual-laser odometry
framework DVL-SLAM [12]. More specifically, we propose a novel optimization-
based framework that fuses inertial data in 2 steps. Firstly, inertial measure-
ments are used to introduce additional constraints in direct image alignment.
The estimated pose is then refined in IMU-assisted windowed refinement. The
introduction of IMU is very beneficial since the ill-effects of sparse LiDAR depth
association and high sensitivity of image warping are minimized. To highlight
the advantages of our framework, we carry out intensive experiments in the chal-
lenging UrbanLoco [13] and USVInland [14] datasets since the scenarios when
LiDAR or camera produces extremely degraded measurements can be easily en-
countered in urban streets and riverine waterways.

In summary, our contributions are:

– A direct and tightly-coupled visual-laser-inertial odometry system.
– Additional constraints from IMU measurements to aid direct image align-

ment.
– A model to incorporate inertial constraints into windowed refinement.
– Thorough evaluation in UrbanLoco and USVInland datasets to show that

our method outperforms current state-of-the-art ones.

2 Framework

2.1 Notation

Let ipk ∈ R2 and idk ∈ R be image coordinate and inverse depth of a
candidate point k in frame i respectively. Let Ti,Tj ∈ SE(3) be IMU’s poses
when frame i and j are captured respectively. Each pose is composed of a rotation
matrix and a translation vector:

Ti =

[
Ri ti
0 1

]
, Tj =

[
Rj tj
0 1

]
(2.1)

Let TCI ∈ SE(3) be the extrinsic transformation from the IMU’s to camera’s
frame of reference. Then the corresponding coordinate jpk ∈ R2 of the candidate
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point k in frame j is computed by the following formula:

jpk = κ(TCIT
−1
j TiT

−1
CI · κ-1(ipk,

idk)) (2.2)

where κ(·) and κ-1(·) are the camera pinhole projection and back-projection
models respectively. < · > is the action operator in SE(3) [15]. Define I i, I j :
R2 7→ R be the mapping from the pixel’s coordinate to its intensity value in
frame i and j respectively. As in [8], the photometric residual rp ∈ R between
each pair {ipk,

jpk} is defined as:

rp = (I j(
jpk)− bj)−

eaj

eai
(I i(

ipk)− bi) (2.3)

where ai, bi, aj , bj ∈ R are affine brightness parameters that accounts for the
deviation from photo-consistent assumption in real-world environments.

Let the preintegrated IMU rotation, velocity and position measurements [16]
from frame i at timestamp ti to frame j at timestamp tj be ∆R ∈ SO(3),
∆v ∈ R3 and ∆t ∈ R3 respectively. Let abi,

gbi,
abj ,

gbj ∈ R3 be the current
accelerometer’s and gyroscope’s bias estimates when frame i and j are captured
respectively. Let gJ∆R,

aJ∆v,
gJ∆v,

aJ∆t,
gJ∆t ∈ R3×3 be the jacobian matrices

with respect to IMU’s bias changes between frame i to frame j. Then the inertial
residual rs ∈ R15 between the two frames is defined as:

rs =
[
r⊺R r⊺v r⊺t r⊺ba r⊺bg

]⊺
(2.4)

where the component residuals rR, rv, rt, rba, rbg ∈ R3 are defined as:

rR = Rj ⊖ (Ri(∆R⊕ gJ∆Rrbg))

rv = R⊺
i (vj − vi − g∆t)− (∆v + aJ∆vrba +

gJ∆vrbg)

rt = R⊺
i (tj − ti − vi∆t− 1

2
g∆t2)− (∆t+ aJ∆trba +

gJ∆trbg)

rba = abj − abi

rbg = gbj − gbi

(2.5)

Let T̄j , āj , b̄j , v̄j ,
a
b̄j ,

g
b̄j be prior estimates of Tj , aj , bj ,vj ,

abj ,
gbj respec-

tively. Then the prior residual ro ∈ R17 is defined as:

ro =


Tj ⊖ T̄j

aj − āj
bj − b̄j
vj − v̄j

abj −
a
b̄j

gbj −
g
b̄j

 (2.6)

2.2 Candidate Point Selection

Upon receiving a new frame, we project the corresponding LiDAR pointcloud
into the current image, then follow a selection strategy similar to [12] to get a
set of informative pixels with depth which we call candidate points.
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2.3 Frame Tracking

When a new frame j is received, its pose is tracked with respect to the current
reference frame i by direct image alignment. This can be formulated as an IRLS
problem in which the energy to be minimized is as followed:

E = Ep + λsEs + λoEo =
∑

wpr
2
p + r⊺sΣ

−1
s rs + r⊺oΣ

−1
o ro (2.7)

and the optimizing variale, expressed in a composite manifold [15], as followed:

x = ⟨Tj , aj , bj ,vj ,
abj ,

gbj⟩ ∈ ⟨SE(3),R,R,R3,R3,R3⟩ (2.8)

In this case, we have introduced additional energy terms from inertial measure-
ments to better constrain gradient steps in the traditional direct image align-
ment. In particular, while inertial term Es ensures that our system catches up
with abrupt movements, prior term Eo provides further guarantee that the esti-
mated result is not too optimistic. These two terms are relatively weighted with
respect to Ep by means of weighting factors λs and λo.

For computational efficiency, we utilize the inverse compositional scheme and
alter the photometric residual as followed:

rp = (I i(
ipk)− bi)−

eai

eaj
(I j(

jpk)− bj) (2.9)

This prevents the system from recomputing the photometric jacobians at each
iteration of the gradient steps, thus improving the overall speed.

To minimize the effect of outliers, the weight wp of each residual is derived
from the residual t-distribution whose expectation µ, standard deviation σ and
degree of freedom υ are chosen as followed:

µ = median{rp}
σ = 1.4826mad{rp − µ}

υ =
4kurtosis{rp} − 6

kurtosis{rp} − 3

(2.10)

For an optimal tuning, similar to [17], we further minimize the negative log
likelihood of the probability density function using Nelder-Mead method to get
the best fitted residual distribution. Then the residual weight can be calculated
as followed:

wp =
υ + 1

υ + (
rp−µ

σ )2
(2.11)

For inertial term, Σs ∈ R15×15 is obtained from preintegrating the IMU
covariances from frame i to frame j. In case of prior term, the estimated value
and inverse of hessian of the last tracking phase are used for the prior estimate
and prior covariance Σo ∈ R17×17 of the current one.

Constant velocity model is used to obtain the initial guess at the beginning
of the tracking. To account for large displacement between frames, we follow the
coarse-to-fine pyramid scheme [8]: create a set of downsized images, then the
estimated value at the current level acts as an initial guess for the subsequent
one.
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2.4 Keyframe Management

Let Np be number of candidate points in the reference frame. For new refer-
ence frame creation, similar to [8], we combine four criteria as followed:

– New reference frame is needed if the field of view changes, which is quantified
by the optical flow from the reference frame to the current frame:

f1 =

√√√√ 1

Np

Np∑
k=1

∥ipk − jpk∥2 (2.12)

– Occlusion occurs more frequently when camera experiences significant trans-
lational movement, which is measured by the optical flow without rotation:

f2 =

√√√√ 1

Np

Np∑
k=1

∥ipk − jpk
′∥2 (2.13)

where the rotational part of T−1
j Ti is set to identity.

– Large camera exposure that heavily violates the photo-consistent assumption
also requires a new reference frame:

f3 = |aj − ai| (2.14)

– Large camera movement increases the uncertainty of IMU preintegration.
Therefore, we introduce a new criterium:

f4 = trΣs (2.15)

Finally, if w1f1 + w2f2 + w3f3 + w4f4 > 1 then the current frame becomes
a new reference one. The four parameters w1, w2, w3, w4 represent the relative
contribution of each indicator and are manually tuned based on circumstances.

2.5 Windowed Refinement

After creating a new reference frame, we perform windowed refinement by
concurrently optimizing states of a fixed number of some most recent reference
frames called keyframes. Mathematically speaking, this leads to solving an IRLS
problem with the energy:

E = Ep + λsEs =
∑

wpr
2
p + λs

∑
r⊺sΣ

−1
s rs (2.16)

and the optimizing variable, expressed in a composite manifold [15], as followed:

x = ⟨T1:Nf
, a1:Nf

, b1:Nf
,v1:Nf

, ab1:Nf
, gb1:Nf

⟩ (2.17)

As can been seen in Figure 1, we have introduced a model that not only
preserves dense photometric connections but also leaves space for inertial con-
nections between keyframes. While photometric energy terms are created when
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Fig. 1: Energy terms in windowed refinement.

a set of candidate points from one keyframe is projected into any other keyframe
in the current sliding window, inertial energy terms are generated by preinter-
grating all measurements between adjacent keyframes. All keyframe’s states are
then jointly solved in a nonlinear iterative procedure similar to that of frame
tracking for their optimal values. Note that because of the large state space of
this problem, we implement an approximate linearization at every gradient step
to speed up the computational speed but still guarantee correct convergence.

3 Results

The proposed framework is validated in two challenging public datasets in
which LiDAR, camera, and IMU can be used concurrently. For comparison, we
reimplement DVL-SLAM [12] with loop closure turned off by disabling IMU
integration in our framework. All experiments are run by a PC with Intel Core
i5-11400F and 32GB RAM.

3.1 Metrics Selection

To quantify the framework’s performance, two different metrics systems are
used. Let {P ∈ SE(3)} and {Q ∈ SE(3)} be the estimated trajectory and ground
truth respectively. To evaluate the global consistency of the estimated trajectory,
ATE (Absolute Trajectory Error) [18] for each synchronized pose pair are cal-
culated as followed:

ATEi = Q−1
i SPi (3.1)

where S ∈ SE(3) is the rigid-body transformation that aligns the estimated
trajectory to ground truth (set to identity in the remaining article). Then root-



Direct Visual-Laser-Inertial Odometry 7

mean-squares ATE (RMSE ATE) are used for overall trajectory evaluation:

RMSE(ATE1:n) =

√√√√ 1

n

n∑
i=1

∥trans(ATEi)∥2 [m] (3.2)

where trans(·) extracts the translational vector of the rigid-body transformation.
To evaluate the local consistency of the estimated trajectory, similar to [18],

RPE (Relative Pose Error) for each pose pair is used:

RPEi = (Q−1
i Qi+∆i

)−1(P−1
i Pi+∆i

) (3.3)

where ∆i is selected so that Qi and Qi+∆i is separated by a fixed δ distance.
However, for overall trajectory evaluation, we follow [19] and separate transla-
tional and rotational parts of RPEs over all pose pairs:

trans(RPE1:n, δ) =
1

s

1

n

n∑
i=1

∥trans(RPEi)∥2 × 100 [%]

rot(RPE1:n, δ) =
1

s

1

n

n∑
i=1

rot(RPEi) [deg/m]

(3.4)

where rot(·) extracts the angle of rotation (angle-axis representation) of the
rigid-body transformation and s is the overall travelled distance:

s =

n−1∑
i=1

∥∥trans(Q−1
i Qi+1)

∥∥2 (3.5)

3.2 Evaluation on USVInland

This dataset represents an unmanned surface vessel (USV) travelling along
a waterway area, which exhibits challenges to odometry system due to existence
of vegetated scenes and absorption of laser points from the water surface as in
Figure 2. In this dataset, we utilize the left camera and the IMU inside the camera

(a) (b) (c)

Fig. 2: Selected scenes from USVInland dataset. Images (a), (b) and (c) with
candidate points overlaid (hotter means nearer) are extracted from sequence
N03 3 605 760, N03 4 440 523 and N03 5 12 340 respectively.
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for estimation. All raw visual, laser, and inertial measurements are synchronized
before being fed into the system. For ground truth generation, we first transform
all GNSS data and external IMU measurements into a common reference frame,
then synchronize with LiDAR’s pointcloud and interpolate for missing data.

Our results in this dataset are shown in Figure 3. It can be easily seen that our
estimated path aligns more closely to the ground truth than that of DVL-SLAM,
which leads to our ATEs and RPEs being significantly lower. This implies that
our framework exhibits more global accurancy due to higher ATEs and local
accurancy due to higher RPEs. As IMU introduces strict rotational constraints,
our rotational RPEs are consistently lower in all sequences, thus reducing the
overall rotational drift. In sequence N03 5 12 340, the fact that our framework
exhibits slightly poorer translational RPEs may stem from lengthy travelled path
and jerky movements at the start of the journey.
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Fig. 3: Results from USVInland dataset. Each column shows plots from sequences
N03 3 605 760, N03 4 440 523, and N03 5 12 340 respectively. Each row from
top to bottom shows the estimated paths, ATEs and RPEs respectively.



Direct Visual-Laser-Inertial Odometry 9

3.3 Evaluation on UrbanLoco

In this dataset, a car is manually driven along urban streets, which poses a
great challenge to odometry system due to road elevation and dynamic objects
as in Figure 4. The frontal camera and consumer-grade Xsens IMU are used in
our framework. Similar to USVInland, all measurements from LiDAR, camera,
and IMU are synchronized before being processed by the system. The estimated
trajectory is then aligned with 6-DOF ground truth generated from a precise
GNSS-INS system for evaluation purposes.

(a) (b)

Fig. 4: Selected scenes from UrbanLoco dataset. Image (a) and (b) with candidate
points overlaid (hotter means nearer) is extracted from sequence CALombard-
Street20190828190411 and CAColiTower20190828184706 respectively.

Our results in this dataset are shown in Figure 5. It is easily noticed that
our framework only performs slightly better than DVL-SLAM in all sequences.
This stems from the fact that urban streets poccess many challenges that our
system cannot fully deal with such as high road elevation and sudden appearance
of dynamic objects (cars, pedestrians, etc). In addition, we witness that there
exists abrupt illumination changes in some scenes, which significantly contributes
to the degradation of visual-based odometry system.
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Fig. 5: Results from UrbanLoco dataset. Each column shows plots from se-
quence CALombardStreet20190828190411 and CAColiTower20190828184706 re-
spectively. Each row from top to bottom shows the estimated paths, ATEs and
RPEs respectively.
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To summarize, we compare the RMSE ATE of our framework and DVL-
SLAM in all sequences in Table 1. Again, ours performs consistently better than
DVL-SLAM in all sequences.

Table 1: Comparison of RMSE ATE [m] in all sequences.
DVL-SLAM Ours

N03 3 605 760 9.035 3.388
N03 4 440 523 2.437 0.719
N03 5 12 340 5.155 4.023
CALombardStreet20190828190411 44.150 42.720
CAColiTower20190828184706 24.854 24.721

4 Conclusion

We have presented a multi-sensor odometry system in which LiDAR, camera
and IMU are fused in a tight and direct manner. Specifically speaking, an IMU-
assisted direct image alignment is introduced to boost the frame tracking perfor-
mance. The estimated pose is then further refined in a novel model that tightly
incorporates inertial constraints between keyframes. Extensive quantitative re-
sults demonstrate that our method exhibits better global and local accuracy
than the current state of the art that only utilizes laser and visual data.
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